Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2573: 179-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040595

RESUMO

NOGA/MyoStar system uses low magnetic fields and endomyocardial electrical parameters, allowing precise endomyocardial injections of therapeutic agents to ischemic yet viable myocardium which is most likely to respond to the treatment. Preclinical and clinical studies have shown that NOGA/MyoStar guided intramyocardial injections are safe, feasible and a minimally invasive way to deliver gene therapy to the heart. Here we describe how to perform electroanatomical mapping and injections to hibernating myocardium in the preclinical studies.


Assuntos
Endocárdio , Imageamento Tridimensional , Catéteres , Terapia Genética , Coração , Miocárdio
2.
Gene Ther ; 29(10-11): 643-652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35132204

RESUMO

Therapeutic angiogenesis induced by gene therapy is a promising approach to treat patients suffering from severe coronary artery disease. In small experimental animals, adeno-associated viruses (AAVs) have shown good transduction efficacy and long-term transgene expression in heart muscle and other tissues. However, it has been difficult to achieve cardiac-specific angiogenic effects with AAV vectors. We tested the hypothesis whether AAV2 gene transfer (1 × 1013 vg) of vascular endothelial growth factor B (VEGF-B186) together with immunosuppressive corticosteroid treatment can induce long-term cardiac-specific therapeutic effects in the porcine ischemic heart. Gene transfers were delivered percutaneously using direct intramyocardial injections, improving targeting and avoiding direct contact with blood, thus reducing the likelihood of immediate immune reactions. After 1- and 6-month time points, the capillary area was analyzed, myocardial perfusion reserve (MPR) was measured with radiowater positron emission tomography ([15O]H2O-PET), and fluorodeoxyglucose ([18F]FDG) uptake was used to evaluate myocardial viability. Clinical chemistry and immune responses were analyzed using standard methods. After 1- and 6-month follow-up, AAV2-VEGF-B186 gene transfer failed to induce angiogenesis and improve myocardial perfusion and viability. Here, we show that inflammatory responses attenuated the therapeutic effect of AAV2 gene transfer by significantly reducing successful transduction and long-term gene expression despite the efforts to reduce the likelihood of immune reactions and the use of targeted local gene transfer methods.


Assuntos
Vetores Genéticos , Fator B de Crescimento do Endotélio Vascular , Animais , Suínos , Fator B de Crescimento do Endotélio Vascular/genética , Vetores Genéticos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Dependovirus/genética , Terapia Genética/métodos , Miocárdio
3.
iScience ; 24(12): 103533, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917905

RESUMO

Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias.

4.
Hum Gene Ther ; 32(19-20): 1295-1307, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494459

RESUMO

Based on recent success in using modified RNA in clinical applications, we tested the safety, feasibility, and efficacy of direct delivery of citrate-saline-formulated mRNA into an hibernating ischemic heart muscle using an electromechanical mapping and injection catheter system (NOGA/Myostar) in a porcine chronic myocardial ischemia model. Chronic ischemia was induced in domestic pigs (n = 24) using a bottleneck stent placed in the left anterior descending coronary artery. Low (1 mg) and high (7.5 mg) doses of citrate-saline-formulated vascular endothelial growth factor (VEGF)-A165 mRNA were administered in the study. LacZ mRNA and citrate-saline buffer were used as controls. Ten intramyocardial injections (200 µL each) of the mRNAs or citrate-saline buffer were given endovascularly into the hibernating ischemic myocardium using the NOGA catheter. Positron emission tomography 15O-radiowater imaging was performed 7 days after the induction of ischemia and 28 days after the mRNA delivery to measure quantitative myocardial blood perfusion. Coronary angiography, left ventricular function measurements, and clinical chemistry were obtained at each time point. Thirty-five days after the mRNA transfers, pigs were sacrificed, and infarct size and general histology were analyzed. LacZ mRNA pigs were sacrificed 24 h after the transduction. Citrate-saline-formulated mRNA delivery into the ischemic myocardium with endovascular injection catheter did not lead to meaningful transduction with the translation of VEGF-A165, nor therapeutic effects in the heart. VEGF-A165 mRNA showed no statistically significant improvements in left ventricular ejection fraction (LVEF), cardiac output, myocardial perfusion, infarct size, collateral growth, or capillary area in the study groups. However, there was a trend in the high-dose group toward an improved LVEF and cardiac output at rest. No significant adverse effects were observed. In conclusion, the NOGA/Myostar injection catheter system is ineffective in delivering citrate-saline-formulated mRNAs into the heart muscle with the doses and methods used in a porcine chronic myocardial ischemia model.


Assuntos
Isquemia Miocárdica , Fator A de Crescimento do Endotélio Vascular , Animais , Catéteres , Ácido Cítrico , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Miocárdio , RNA Mensageiro/genética , Volume Sistólico , Suínos , Função Ventricular Esquerda
5.
J Vis Exp ; (175)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542527

RESUMO

Coronary artery disease is one of the significant causes of mortality and morbidity worldwide. Despite the progression of current therapeutics, a considerable proportion of coronary artery disease patients remain symptomatic. Gene therapy-mediated therapeutic angiogenesis offers a novel therapeutic method for improving myocardial perfusion and relieving symptoms. Gene therapy with different angiogenic factors has been studied in few clinical trials. Due to the novelty of the method, the progress of myocardial gene therapy is a continuous path from bench to bedside. Therefore, large animal models are needed for evaluating the safety and efficacy. The more the large animal model identifies the original disease and the endpoints used in clinics, the more predictable outcomes are from clinical trials. Here, we introduce a large animal model for evaluating the efficacy of the gene therapy in the ischemic porcine heart. We use clinically relevant imaging methods such as ultrasound imaging and 15H2O-PET. For targeting the gene transfers into the desired area, electroanatomical mapping is used. The aim of this method is: (1) to mimic chronic coronary artery disease, (2) to induce therapeutic angiogenesis at hypoxic areas of the heart, and (3) to evaluate the safety and efficacy of the gene therapy by using relevant endpoints.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Miocárdio , Suínos
6.
BMC Mol Cell Biol ; 20(1): 32, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409295

RESUMO

BACKGROUND: Endothelial cells (ECs) play a key role in tissue homeostasis, in several pathological conditions, and specifically in the control of vascular functions. ECs are frequently used as in vitro model systems for cardiovascular studies and vascular biology. The porcine model is commonly used in human clinical cardiovascular studies. Currently, however, there is no robust protocol for the isolation of porcine heart ECs. We have developed a fast isolation protocol, which is cost effective, takes only 1-2 h, and produces EC purity of over 97%. This protocol is optimized for porcine hearts but can be adapted for use with other large animals. METHODS: Heart is washed by flushing with PBS, whereafter endothelial cells are detached by collagenase incubation and the cells can then be collected immediately after the incubation and plated within an hour after the heart is isolated from a pig. RESULTS: The swiftness of the protocol limits changes in the phenotype and RNA expression profile of the cells. Cells were identified as ECs with CD31 (PECAM-1) antibody immunostaining. Functionality of ECs were ensured with in vitro angiogenesis assay. The purity of the ECs was verified by using fluorescence assisted cell sorting (FACS) with the CD31 antibody. CONCLUSION: We developed a new, fast, and cost-effective isolation method for pig heart ECs. Successful isolation of pure ECs is a prerequisite for several cardiovascular and vascular biology studies.


Assuntos
Doenças Cardiovasculares/patologia , Biologia Celular , Separação Celular/métodos , Células Endoteliais/citologia , Genômica , Miocárdio/citologia , Transcriptoma/genética , Animais , Células Cultivadas , Feminino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...